
Do Response Selection Models Really Know What's Next? 
Utterance Manipulation Strategies 
for Multi-turn Response Selection

Taesun Whang*, Dongyub Lee*, Dongsuk Oh, Chanhee Lee, 
Kijong Han, Dong-hun Lee, and Saebyeok Lee

* Equal Contribution.



✔

Multi-turn Response Selection

• Selecting the optimal response given a user and dialog context in multi-turn dialog systems.

Good morning! What can I do for you?

How much does a seven-day 
tour by bus cost?

With pleasure. We arrange two kinds of tourist programs for 
California, a seven-day tour by bus and a five-day flying journey.

I'm thinking of traveling to California in May. 
Could you recommend some tourist programs for that?

[Dialog Context]

Does that include hotels and meals?
Two thousand dollars. 

[Response Candidates]

⋮



Recent success of PrLM based models 

• BERT-VFT (Whang et al., 2020) • BERT-SS-DA (Lu et al., 2020)

• Obtained state-of-the-art results.

• Tend to make predictions based on relatedness of history and candidates.

• Limits in adapting the sequential nature of multi-turn dialog.

Whang et al., An Effective Domain Adaptive Post-Training Method for BERT in Response Selection. INTERSPEECH 2020.

Lu et al., Improving Contextual Language Models for Response Retrieval in Multi-Turn Conversation. SIGIR 2020.



Recent success of PrLM based models (Adversarial Experiments)

[Response Candidates]

[Dialog Context]

Next term, I will learn Python, there are other topics that I like also.

Great, what is your major?

I'm interested in computer engineering.

What level of programming are you capable of?

I have some programming experience in C++ and Matlab after taking …

Nice try of it.

I'd recommend that your take EECS280 and EECS203 as soon 
as you can. They are important for your computer science major.

Hello, is there anything I can help you with?

Hi, I want to get some suggestions about next semester's course selections.

…

That works. Are there any suggestions of advanced classes using Python?

(a) Ground Truth (BERT score : 0.813)

(b) Adversarial Example (BERT score : 0.993)

Speaker 1
Speaker 2

That works. Are there any suggestions of advanced classes using Python?



Multi-turn Response Selection (Challenges)

• Domain adaption based on an additional training on a target corpus is extremely time-

consuming and computationally costly.

• Formulating response selection as a dialog-response binary classification task is insufficient

to represent intra- and inter-utterance interactions.

• Existing models tend to select the optimal response depending on how semantically similar it

is to a given dialog.

Utterance Manipulation Strategies (UMS)



Contributions

• Show that existing response selection models are more likely to predict a semantically relevant 

response with its dialog rather than the next utterance.

• Propose highly effective self-supervised learning methods, utterance manipulation strategies (UMS), 

which aid the model towards maintaining dialog coherence.

• State-of-the-art performance on multiple public benchmarks (i.e., Ubuntu, Douban, and E-commerce). 



Proposed Method (Overview)



Proposed Method (Language Models for Response Selection)

• Pre-trained Language Models : BERT (Devlin et al., 2019), ELECTRA (Clark et al., 2020)

• Domain-specific Post-training (Additional training on a target corpus with PrLM objectives)

• Training Response Selection Models : BERT (Whang et al., 2020)

Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.
Clark et al., ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ICLR 2020.
Whang et al., An Effective Domain Adaptive Post-Training Method for BERT in Response Selection. INTERSPEECH 2020.



Proposed Method (UMS – Utterance Insertion)

(a)

(b)

(d)

(e)

(c)

[Utterance Insertion]

I'm thinking of traveling to California in May. 
Could you recommend some tourist programs for that?

With pleasure. We arrange two kinds of tourist programs for 
California, a seven-day tour by bus and a five-day flying journey.

How much does a seven-day tour by bus cost?

Two thousand dollars. 

Does that include hotels and meals?

Speaker 1

Speaker 2

Target Utterance

• Find where the selected utterance should be inserted.

• [INS] tokens are positioned before each utterance and 

after the last utterance.

• 𝒖𝒖𝒕𝒕 is the target utterance and [𝐈𝐈𝐈𝐈𝐈𝐈]𝒕𝒕 is the target 

insertion token.



Proposed Method (UMS – Utterance Deletion)

(a)

(b)

(c)

(d)

I'd like to taste some local dishes. What would you recommend?

[Utterance Deletion]

Two thousand dollars. 

With pleasure. We arrange two kinds of tourist programs for 
California, a seven-day tour by bus and a five-day flying journey.

I'm thinking of traveling to California in May. 
Could you recommend some tourist programs for that?

Random
Dialog

How much does a seven-day tour by bus cost?

Speaker 1

Speaker 2

Target Utterance

• Find an unrelated utterance to the dialog.

• The unrelated utterance is sampled from the 

random dialog.

• [DEL] tokens are positioned before each utterance.

• 𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 is the utterance from the random dialog and 

[𝐃𝐃𝐃𝐃𝐃𝐃]𝒕𝒕 is the target deletion token.



Proposed Method (UMS – Utterance Search)

(a)

(b)

(c)

(d)

(e)

(f)

[Utterance Search]

I'm thinking of traveling to California in May. 
Could you recommend some tourist programs for that?

With pleasure. We arrange two kinds of tourist programs for 
California, a seven-day tour by bus and a five-day flying journey.

How much does a seven-day tour by bus cost?

Does that include hotels and meals?

Two thousand dollars. 

Previous
Utterance

Oh, yes, and admission tickets 
for places of interest as well.

Speaker 1

Speaker 2

Target Utterance

• Find the previous utterance of the last utterance 

from the jumbled utterances.

• Shuffle utterances except for the last utterance.

• [SRCH] tokens are positioned before each utterance.

• 𝒖𝒖𝒕𝒕′ (𝒖𝒖𝒌𝒌−𝟏𝟏) is the previous utterance of the last 

utterance 𝒖𝒖𝒌𝒌 and [𝐈𝐈𝐒𝐒𝐒𝐒𝐒𝐒]𝒕𝒕 is the target search token.



Proposed Method (Multi-task Learning Setup)

• The output representations of special tokens ([INS], [DEL], and [SRCH]) are used to classify 

whether each toke is in a correct position to be inserted, deleted, and searched. 

• Target tokens for each task ( 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕, [𝐃𝐃𝐃𝐃𝐃𝐃]𝒕𝒕, and [𝐈𝐈𝐒𝐒𝐒𝐒𝐒𝐒]𝒕𝒕) are labeled as 1, otherwise 0.

• Binary cross-entropy loss for all auxiliary tasks to optimize the model.

• Response Selection loss and UMS losses are summed with the same ratio.

, where



Experimental Setup

• Dataset

• Ubuntu : Ubuntu internet relay chats (troubleshooting the Ubuntu OS).

• Douban : Chinese open-domain dialogs (web-crawled from Douban Group).

• E-Commerce : Chinese customer consultation dialogs (Taobao).

• Kakao : Korean open-domain (Twitter and Reddit) constructed by Kakao Corporation.

• Evaluation Metrics

• Rn@k (k={1,2,5}), P@1, Mean Average Precision (MAP), Mean Reciprocal Rank (MRR)



Baselines

• Single-turn Matching Models

• CNN, LSTM, BiLSTM

• MV-LSTM, Match-LSTM

• Multi-turn Matching Models

• Multi-View, DL2R

• SMN, DUA, DAM, IoI

• MSN

• BERT-based Models

• Vanilla BERT, BERT-SS-DA, SA-BERT 



Quantitative Results (Ubuntu, Douban, and E-Commerce Corpus)



Quantitative Results (Ubuntu, Douban, and E-Commerce Corpus)

• Two different PrLMs (BERT and ELECTRA)

• Domain-specific post-training (denoted as BERT+ and ELECTRA+)

• ELECTRA vs UMSELECTRA

• R10@1: + 2.8% (Ubuntu), + 3.9% (E-Commerce)

• P@1 : + 0.7% (Douban)

• BERT+ vs UMSBERT+

• R10@1: + 1.3% (Ubuntu), + 3.7% (E-Commerce)

• P@1 : + 3.3% (Douban)



Quantitative Results (Kakao Corpus)

• BERT vs UMSBERT

• UMSBERT improves performance compared to the baseline for both Web and Clean.

• Absolute improvement of 5.1% (Web) and 6.8% (Clean) in P@1.

P@1

+ 6.8%

+ 5.1%



Adversarial Experiment

*Lower is better

• Investigate whether language models for response selection are trained properly.

• Randomly extract an utterance from the dialog context and replace it with one of negative responses.

• R10@1 score decreases by 58% (baselines) and 48 % (UMS) on average.



Ablation Study

• One auxiliary task (i.e., 3 > 2 ≈ 4)

• Two auxiliary tasks (i.e., 5 ≈ 7 > 6)

• Overall, DEL > INS ≈ SRCH

• Improvement of 2.8% w.r.t. R10@1

+ 1.0%
+ 2.2%
+ 0.8%

+ 2.7%
+ 1.5%
+ 2.6%

+ 2.8%

R10@1



Visualization



Conclusion

• Pointed out the limitations of existing works based on PrLMs, such as BERT in retrieval-based multi-

turn dialog systems.

• Proposed highly effective utterance manipulation strategies (UMS) for multi-turn response selection.

• UMS are fully applied in self-supervised manner and can be easily incorporated into existing models.

• New state-of-the-art results on multiple public benchmark datasets.



Thank you
Our code is publicly available at
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